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2 Flawed Items

Abstract

A (multiple-choice) test item is identified as flawed if it has no

single best answer. In spite of extensive quality control procedures, the

administration of flawed items to test-takers is inevitable. Common

strategies for dealing with flawed items in conventional testing, grounded in

the principle of fairness to test-takers, are reexamined in the context of

adaptive testing. An additional strategy, available for adaptive testing, of

retesting from a pool cleansed of flawed items, is compared to the existing

strategies. Retesting was found to be no practical improvement over current

strategies.

Key Words: computerized adaptive testing, flawed items, monte carlo

simulations.
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Introduction

Large testing organizations produce thousands of new items every yaar.

These items typically are reviewed and revised many times, by content experts,

test specialists, and sensitivity reviewers, before being presented to test-

takers. An item that has survived this extensive review process is then

usually 'pretested', that is, included with other such items and administered

to test-takers but not included in test scores. The purpose of this final

step is to identify items with appropriate statistical properties. At every

stage in this extensive development process, items may be discarded as

deficient in one or more features that are associated with good test items

Occasionally, in spite of the care taken in the development of items

that count towards test-takers' scores, a (multiple-choice) item will be

identified as 'flawed' when it appears in a test, that is, the item has no

single best answer. Testing organizations have developed various strategies

in the context of conventional (linear) paper-and-pencil testing for dealing

with the discovery of flawed items that were originally intended to count

towards test-takers' scores. The professional principle underlying such

strategies is fairness to test-takers, in conformance with the Standards for

Educational and Psychological Testing (American Educational Research

Association, American Psychological Association, National Council on

Measurement in Education, 1985).

Recent advances in psychometrics and computing technology have led to

the development of testing paradigms that are very different from linear

paper-and-pencil testing, such as computerized adaptive testing (CAT) or

computerized mastery testing (GMT). for example, Eignor, Way, Stocking, &

Steffen (1993), Lord (1977), Schaeffer, Steffen, & Golub-Smith (1993), Sheehan
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and Lewis (1992), Stocking and Swanson (1993), and Wainer, Dorans, Flaugher,

Green, Mislevy, Steinberg & Thissen (1990). Existing strategies for handling

flawed items must be reexamined for appropriateness in these new testing

paradigms, and new strategies may be required. In this paper, we will discuss

current strategies, their applicability in the context of computerized

adaptive testing (CAT), and a monte carlo experiment to evaluate various

potential strategies in adaptive testing.

Typical Flaws and Current Strategies

Conventional Testing

Conventional linear paper-and-pencil tests are typically administered

relatively few times a year to large numbers of test-takers simultaneously.

There is a lapse in time between testing and the reporting of test scores to

individuals and institutions while answer sheets are collected in a central

location and translated into computer-readable records, tests are scored and

equated, and score reports are produced and mailed. These characteristics of

conventional testing have facilitated the development of certain strategies

for dealing with flawed items. First, because of the time lapse for score

reporting, some actions can be taken before score reporting ever occurs.

Second, because it is easy to identify all test-takers who were administered

the flawed item, it is also easy to rereport scores within the time the scores

are still considered meaningful.

Strategies for dealing with flawed items fall into two major categories:

either remove the flawed item from the test or rescore the flawed item in a

reasonable fashion. In either case test scores are reported or possibly
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rereported for affected test-takers and a particular strategy is chosen in

light of what is fairest for all test-takers.

Typical flaws include the following:

1) No correct answer

An item can become obsolete or incorrect because of societal

changes, scientific discoveries, and so forth. Or an error that changes the

meaning of the item sufficiently so that no answer is correct can be

introduced inadvertently into item text.

2) Multiple correct answers

It is possible that a test-taker with a novel point of view may

discover that from a particular perspective an item has a different right

answer or multiple right answers, as in, for example, Wainer (1983).

3) An incorrect scoring guide or key was used

For this type of flaw, the item itself is valid, but incorrect

information about correct answers was used in the process of machine scoring

answer sheets.

Table 1 shows which strategies are most frequently appropriate for the

various types of flaws before scores are rereported to test-takers and

institutions.

Insert Table 1 about here

Adaptive Testing

In the administration of a conventional test, every test-taker responds

to the same set of items. In adaptive testing, where an item is selected

based on responses to previous items, it is theoretically possible for every
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test-taker to receive a different test. In addition, since adaptive tests are

administered on a computer, testing is nearly continuous and score reporting

can be immediate. These two characteristics make the strategies outlined

above more difficult to implement since identification of test-takers who

received a flawed item is more compleA and scores may have already been

reported. While this serves to make the book-keeping task more difficult, and

may always require rereporting of scores, it does not obviate any of the

strategies outlined above that are used to implement the principle of fairness

to test-takers.

Adaptive testing presents an additional problem that is not present in

conventional testing. Responses to each item contribute to a test-taker's

score, as in conventional testing. However, responses to each item also

determine which items are selected subsequent to a given item Thus there is

the potential that a flawed item might lead to the routing of a test-taker

through the pool of items in such a way as to unfairly influence his or her

final score. Simply rescoring or removing a flawed item, as is done in

conventional testing, may not be sufficient to compensate for the full effects

of a flawed item in adaptive testing.

An effective strategy for dealing with flawed items in adaptive testing,

then, might be to remove a flawed item from the item pool, and offer test-

takers the opportunity to repeat the test without cost to them. This is a

costly alternative to rescoring and rereporting, both in terms of the actual

costs of adaptive test administration and in terms of inconvenience to test-

takers. In circumstances where the difference in scores between rescoring and

a second adaptive test from a reduced pool are comparable to the difference

expected from two adaptive tests from the same reduced item pool, retesting
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might prove to be unnecessary. The monte carlo experiment is designed to

investigate these issues.

The Adaptive Test

The particular adaptive test chosen for this experiment is a test

designed to measure verbal reasoning in a high-stakes admissions testing

context. The verbal measure was chosen over the other two measures available

because this measure represents a balance of discrete items as well as items

associated with reading passages, whereas one of the other two measures

available consisted of predominantly discrete items (for which one would

expect flawed items to have a smaller impact on routing) and the other

consisted of predominantly set-based items (for which one would expect flawed

items to have a larger impact on routing). For the companion linear paper-

and-pencil testing program in the last calendar year, approximately .01% of

the items across all tests were identified as flawed.

The psychometrics underlying the adaptive test are based on the three

parameter logistic Item Response Theory (IRT) model (Lord, 1980). The item

pool consists of 331 items and passages that are identified along 38 different

(usually nonmutually exclusive) features associated with subject matter, item

type, and so forth. The items were calibrated and placed on the same metric

using the computer program LOGIST (Wingersky, 1983). The item selection in

the adaptive test employs the methodology of the weighted deviations model of

Stocking and Swanson (1993) with the extended Sympson and Hetter (1985)

exposure control methodology (Stocking, 1992) to increase item security. (For

details of the test design process, see Eignor, et al., 1993).
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In the weighted deviations approach to adaptive testing, item properties

or features are taken into account along with statistical properties in the

selection of items. This is to insure that each adaptive test produced from

the pool matches a set of test content and item type specifications and is

therefore as parallel as possible to any other test in terms of content and

type of items, while being tailored to an individual examinee in terms of

difficulty. The weighted deviations approach also allows specification of

overlapping items that cannot be administered in the same adaptive test. In

addition, it is possible to restrict item selection to blocks of items, either

because they are associated with a common stimulus or common directions or any

other feature that test specialists deem important.

In summary, in the weighted deviations model, the next item selected for

administration is the item that

1) is the most informative item possible at a test-taker's estimated

ability level, while

2) simultaneously contributing the most to the satisfaction of all other

constraints in addition to the cons?aints on item information.

At the same time, is required that the item

3) does not appear in an overlap group containing an item already

administered, and

4) is in the current block (if the last item was in a block), starts a

new block, or is in no block.

The Symps)n and Netter exposure control methodology further restricts

item selection by determining if the selected item is likely to be overexposed

if administered, based on exposure control parameters developed over a :cries

of simulations with a (simulated) typical group of test-takers. If so, this
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methodology forces the administration of an item that has been administered

less frequently. For this adaptive test, the maximum observed exposure of an

item is about .24, meaning that no more than 24% of a typical group of test-

takers will receive the most popular item in the pool. The estimated

reliability, computed using Green, Bock, Humphreys, Linn, & Reckase (1984,

equation 6) of the adaptive verbal measure at the end of mane test design

simulations was .902.

The adaptive test is scored by converting the final (maximum likelihood)

estimate of examinee proficiency to an estimated number right true score on a

(linear) 76-item reference test that was previously scaled to the score

reporting metric. For this test, the raw (estimated number right) scores

rang from a chance level of 13 to a high of 76.

The Monte Carlo Experiment

The Number of Flawed Items

The starting point for this experiment is the final simulation to

establish the test design for the adaptive verbal measure. This baseline

simulation was performed for 1300 simulees from a uniform distribution of

proficiency and the results were weighted to reflect the results for a typical

distribution of proficiency. The typical distribution of proficiency was

obtained using the methods of Mislevy (1984). All subsequent simulations

required by the current experiment were performed in a similar fashion.

In all, five experimental conditions were considered:

1) Twenty-five most popular

To simulate a worst case, the 25 most popular (that is, most

frequently administered) items in th, baseline simulation were
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considered to be flawed. Thus nearly every simulee should receive

at least one flawed item.

More realistic conditions would dictate that there might be

approximately .04 flawed items in a 381-item pool (.01% of 381). We chose to

model the substantially larger number of two flawed items for the remaining

conditions as a conservative approach that would fe-ilitate the comparison of

the various conditions. The remaining four conditions are as follows:

2) Two most popular

The second condition considered the two most popular items in the

baseline simulation to be flawed. A substantial number of

simulees can be expected to receive at least one.

3) Two typical items

The third condition considered two items with average exposure

rates from the baseline simulation to be flawed. This is probably

the most realistic condition in terms of the exposure rate of

items.

4) Two most popular as first items

The fourth condition considered as flawed those two items that

appeared most frequently as the first item in the baseline

simulation. In this condition, one would expect to find the

biggest impact on the routing of the simulee through the remainder

of the pool.

5) Two most popular as last items

The fifth condition considers as flawed those two items that

appeared most frequently as last items in the baseline simulation.

BEST COPY AVAILABLE
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These items, of course, can have no effect on the adaptive test

routing, but may have an effect on final test scores.

Modeling Flawed Items

Because adaptive testing is based in Item Response Theory, monte carlo

simulations are possible. In this context, right and wrong responses can be

generated for simulated examinees (simulees) in conformance with the item

response model chosen and the estimated item parameters for each item (Lord,

1980, Hambleton and Rovinelli, 1973). In typical simulations of adaptive

testing, estimates of item parameters are obtained from pretesting the items,

and the estimates are treated as if they were true values in the generation of

simulee responses and in the routing of simulees through the adaptive test.

The simulation of flawed items requires a slightly different

philosophical approach. We use the estimated item parameters as true values

for the selection of items in the adaptive test. However, right and wrong

responses for simulees are generated using a different set of item parameters

that reflect the fact that the item is flawed when it is administered in the

context of counting towards a test score, but not flawed when it was

pretested. (If it were identified as flawed on the basis of pretest data, it

would not have been included in the item pool).

For example, suppose that a particular item was

at that time to be an appropriate item. Suppose that

item became corrupted over time so that when the item

pretested and determined

somehow the text of the

is used in an adaptive

test, it has no correct answer. The item parameters estimated from pretesting

are used by the item selection algorithm in the selection of items. However,

a test-taker sees the item and realizes that there is no correct answer. Thus
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the item appears impossibly difficult to the test-taker and the test-taker's

response is modeled by a second set of item parameters.

For purposes of this experiment, two different kinds of flawed items

were simulated in the following conservative approach, in order to assess the

effects of circumstances more extreme than are likely to be found in actual

practice. For flawed items for which there is no correct answer when

presented to test-takers, we assumed that the item would become very difficult

and all simulees would respond incorrectly. For this situation, simulee

responses were generated to a very highly discriminating item that was very

difficult, and impossible to answer correctly by guessing (a = 3, b = 10, and

c = 0). For flawed items with more than one correct answer or for whicl. the

incorrect scoring guide was used, we assumed that the item would also become

very difficult but that some simulees would respond correctly by chance alone.

For this situation, simulee responses were generated for item parameters of a

= 3, b = 10, and c - .25.

In assigning flaws to items, a simple pattern of alternation was

followed. In the first condition with 25 flawed items, items 1, 3, 5, ...25,

were assigned a=3, b=10, and c =0 as parameters for generating simulee

responses, for a total of 13 such items. Items 2, 4, 6, ... 24, were assigned

a=3, b-10, and c=.25 as parameters for generating simulee responses for a

total of 12 such items. In the other four conditions with two flawed items,

the first item was always identified with the first type of flaw; the second

item was always identified with the second type of flaw.

Methods of Rescoring

As seen in Table 1, there are a number of possible strategies that may

be used for different kinds of detected flaws in items. We chose to compare
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four different strategies. The first three strategies ignore the type of flaw

simulated for the item. In the first strategy we remove flawed items from

simulees' response strings and rescore the adaptive test based on the reduced

set of responses. A second strategy is to score any answer correct. In the

context of a simulation, this results in changing all incorrect answers to

correct answers and rescoring the adaptive test. A third strategy is to

rescore flawed items with the correct key. This is accomplished by generating

a new response for a flawed item based on the estimated item parameters

obtained from pretesting and rescoring the adaptive test.

In the fourth and final strategy, we take into account the type of flaw

being simulated in an item. Items simulated as flawed because they have no

correct answer are removed from the response string before rescoring. For

items simulated as flawed because of more than one correct answer or because

of an incorrect scoring guide, new responses are generated using the pretest

item parameters and the response string is restored.

The Reduced Pools

The final alternative for dealing with flawed items in the context of

adaptive testing is to remove flawed items from the pool, and to offer

retesting from the reduced pool for those test-takers who received flawed

items from the original pool. In order to simulate the results of this

alternative, the original'pool was reduced five separate times in parallel

with the five coniitions studied and the simulations were repeated.

16
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The Results

The Reduced Pools

Before any useful comparisons can be made, it is necessary to examine

the consequences of reducing the original baseline pool five separate times in

order to insure that the results are in conformance with what would actually

happen in practice. Table 2 displays the maximum observed exposure rates for

an initial adaptive test simulation on each of the five reduced pools. As can

be seen from this Table, three of the pools produced maximum exposure rates

that were in excess of what was considered desirable for the baseline pool.

This was anticipated for the first condition in which the 25 most popular

items were removed from the pool. It was not anticipated for the remaining

conditions in which just two items were removed from the pool. However, it is

clear from the table that which two items are removed can have differential

effects on observed maximum exposure rates, with the removal (f the two most

popular items having an effect similar to removing the 25 most popular items.

Therefore, additional extended Sympson and Netter iterations were

performed for the three pools requiring such iterations in order to adjust the

exposure control parameters to take into account the new pool sizes. The

maximum exposure rates for the adjusted exposure control parameters are given

in parentheses in Table 2, and seems satisfactory.

Insert Table 2 about here
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Rescoring Methods

Tables 3a through 3e display aspects of the simulations and the

rescoring. The first column in each table gives the reliability and test

length of the baseline unflawed simulation and is the same for all five

tables. The second column gives the same information for the simulation in

which the items were considered flawed and the simulees' responses to flawed

items were generated using the alternate set of item parameters. The next

four columns give the results for each rescoring of tha flawed simulation, and

the final column gives the reliability and test length for the simulation on

the reduced pool after the new extended Sympson and Hetter iterations were

performed (if required).

Insert Tables 3a-3e about here

For each rescoring, the Tables display the mean score difference

(rescored simulation minus flawed simulation results) for simulees receiving

flawed items in a typical population of test-takers. Thus if the 25 most

popular items are simulated as flawed and then removed from scoring, the

average test-taker score increases 5.06 raw score points. If the flawed items

are rescored as all correct, the increase is 7.27. If the correct key is used

to rescore items, the increase is 5.06, and if the items are rescored taking

into account the type of flaw in the item, the average increase is 5.03.

Tables 3a through 3e also display the proportion of a typical population

that could be expected to have at least one flawed item. If the 25 most

popular items are simulated as flawed, 100% of this typical distribution can

be expected to have at least one flawed item, while if only the two most
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popular items are simulated as flawed, 40% of a typical population have at

least one flawed item. If two typical items are simulated as flawed, only

about 21% of a typical group of test-takers receives one or more flawed items.

As expected, an adaptive test with flawed items has lower reliability

than an adaptive test without flawed items from an item pool of the same size.

This reduction in reliability is largest when the number of flawed items is

greatest (from .902 to .757 for Table 3a). However, it is also fairly large

if the two items that are simulated as flawed are the two that have the most

impact in the routing through the pool because they are the two items

appearing most frequently in the first position of the adaptive test

simulation on the baseline pool (Table 3d). The reliability is substantially

improved by any method of rescoring, and also by removing the items from the

pool and repeating the testing. However, the reliability of the adaptive test

from the reduced pool is usually slightly lower than that for the baseline

pool, as expected since the reduced pool contains fewer items.

Rescoring flawed items by accepting any response as a correct answer

results in the largest score increase -- sometimes double that of the other

rescoring methods. The other three methods of rescoring result in mean score

increases that are very similar to each other. For the conditions in which

only two items are simulated as flawed, this is not surprising. The effect of

removing two items from a 30-item test, or generating two new responses with

the right item parameters, or removing one item and generating a new response

for the other should raise test scores slightly because each method is

equivalent to discarding two very hard items and substituting either no items,

or items that are easier. The effects of rescoring when two items are changed

19
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are very similar because two items is a small percentage of the 30 items on

which the maximum likelihood estimate of proficiency is based.

For the condition in which 25 items are simulated as flawed, one might

expect a greater difference among the scoring methods. However, a detailed

examination of the conditional distribution of the number of flawed items in

an adaptive test (conditional on true ability) reveals that the number of

flawed items per simulee is usually quite small. Only two simulees out of

1300 received 10 or more flawed items. Thus the same argument that only a

small percentage of items for any individual simulee is flawed holds.

For the four conditions involving only two flawed items, if the two

items appear most frequently in the fi.:st position of an adaptive test, the

mean score differences of all rescoring methods are greater by roughly a

factor of five than those for two flawed items that appear most frequently in

the last position of an adaptive test. The most popular first items in an

adaptive test are likely to be informative (psychometrically) and most

appropriate for test-takers of typical proficiency. The most popular last

items in an adaptive test are likely to be less informative but still

appropriate for test-takers of typical proficiency. Rescoring of first items

has a larger effect than rescoring of last items due to the differential

impact on (maximum likelihood) scoring of the more informative items and the

less informative items.

The effects for two typical items and for the two most popular items are

between these two extremes. The most realistic situation is likely to be that

in which the two flawed items are items with typical exposure rates. In this

situation, rescoring methods can be expected to result in about a half-point

to one point increase in average test scores. The most appropriate rescoring
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method, which takes into account the type of ilawed item, results in a mean

score increase for a typical population of .6 of a raw score point.

Rescoring vs. Retesting from a Reduced Pool

The above results illuminate the differences among four different

methods of rescoring an adaptive test. A key question is how different any

method is from offering test-takers who received flawed items a second

adaptive test from a pool from which the flawed items have been removed. For

this analysis, we considered only the appropriate method of rescoring that

takes into account the nature of the flawed items.

Table 4 displays the root mean squared score differences (RMSDs) between

various simulations of interest for each of the five conditions for those

simulees who received flawed items. Formulae for the computation of these are

given in the Appendix. Column 1 contains the RMSDs that can be expected from

two administrations of CAT from the baseline pool for simulees who received

flawed items in each of the five conditions. These numbers differ from each

other only because the conditional (on true ability) distributions of simulees

receiving flawed items vary from condition to condition, with all simulees in

the first condition receiving at least one flawed item.

Insert Table 4 about here

The second column contains the expected RMSDs (for simulees receiving

flawed items) between a rescored CAT and a CAT from the reduced pool. The

third column contains the expected RMSDs (for simulees receiving flawed items)

between two CATs administered from the reduced item pool.
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The RMSDs between two CATs from the baseline pool (column 1) are

typically smaller than the corresponding from the RMSDs from the reduced pool

(column 3) for most conditions. This is to be expected since the reduced pool

is smaller than the baseline pool and therefore item selection is less

optimum, causing greater variability upon retesting from -.1,e same pool.

The RMSDs between a rescored CAT and a CAT from the redu(?.d pool are

larger than the RMSDs between two CATs from the reduced pool for the first,

second, and fourth conditiu.Ls. These three conditions can be expected to have

the most effect on routing in the simulation of flawed items. For the other

two conditions with no effect (the fifth condition) or random effects (the

third condition) on routing the direction of the differences between RMSDs is

reversed. Although all differences between RMSDs are small (the maximum is on

the order of .5 a raw score point for the 25 flawed item simulation) and these

results could be due to sampling error, they are somewhat disquieting. The

RMSD between two replications from the same pool is related to test-retest

reliability, and this comparison is akin to finding that the correlation

between scores on two different measures is higher than the correlation

between (repeated) scores on the same measure. This is further illustrated in

Table 5, which gives the correlation between pairs of scores (for simulees

with flawed items) for all the conditions.

Insert Table 5 about here

To further investigatc this result, we chose to analyze in more detail

one of the anomalous conditions two typical items simulated as flawed.

Table 6 shows the results 'f seven additional replications for this condition
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in addition to the original shown in Table 4, along with the means and

standard deviations of the RMSDs for all replications.

Insert Table 6 about here

The difference of the mean RMSD from two administrations from the

baseline pool (column 1) minus the mean RMSD from two administrations from the

reduced pool (column 3) is -.117, with a standard error of .004. Thus the 95%

confidence interval for the difference is [-.128, -.106], which does not

include zero. This in comforting since we expect that the RMSD for a smaller

pool should be larger than for larger pool. The difference of the mean RMSD

from a rescored test and a retesting with a reduced pool (column 2) minus the

mean RMSD from two administrations from the reduced pool (column 3) is -.139

with a standard error of .079, giving a 95% confidence interval for the

difference of [-.J26, .049]. Since this confidence interval includes zero, we

can view with more certainty the apparently anomalous results in Tables 4 and

5 as consequences of sampling error.

Discussion

In spite of quality control procedures followed by testing

organizations, the presentation to test-takers of flawed items that are

originally intended to count toward test scores is inevitable. Testing

organizations have already established various strategies for dealing with

flawed items in conventional (linear) tests, once they are discovered. The

principle underlying all such strategies is fairness to test-takers.

t)r.
1.wt1
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The purpose of the current effort was twofold: to investigate the

applicability of currently known strategies in the context of adaptive

testing, and to compare the current strategies with an additional counterpart

in adaptive testing of offering retesting from a reduced adaptive testing pool

from which flawed items have been removed.

Conventional strategies work well with the adaptive test chosen for this

study. Accepting any response as correct increases the average test score

more than simply removing flawed items, rescoring flawed items with correct

answer keys, or tailoring the strategy to the nature of the fla...ed items, as

would be expected. The magnitude of the increases, based on the simulated

results presented here, depends upon a number of factors. If a large number

of frequently administered items are simulated as flawed, the mk.lan score

increase for any method of rescoring is larger than if the number of flawed

items is small. If the number of items is small (but still an order of

magnitude larger than would be found in actual practice) the magnitude of the

mean score increase for anv rescoring method depends upon the location of the

flawed items in the adaptive test. The largest impact is found for flawed

items that are frequently the first item in adaptive tests from the pool,

while the smallest impact is found for such items when they are most

frequently administered last. The mean score differences for typical items,

as well as frequently administered items are between these two extremes.

In terms of fairness to test-takers, does it make any difference whether

an adaptive test is simply rescored or if they take another test from a

reduced pool? The practical answer is "no". In the worst case, in which a

large number of frequently administered items -e flawed, or if the number of

flawed items is small but can be expected to have an impact on routing, the

r
4
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root mean squared difference between a rescored CAT and a CAT from a reduced

pool is larger than that for two testings from the same reduced pool.

However, the largest observed difference between RMSDs, for the worst case,

was only about cne-half a raw score point; for the other two cases in which

routing can be expected to be influenced, the differences between RMSDs was on

the order of one-tenth a raw score point. For the two cases in which the

number of items is small and can be expected to have little or no influence on

routing through an item pool, the differences between RMSDs were negligible.

Whether the results of this simulation study will generalize to other

adaptive tests is, of course, not known. However, the adaptive test chosen

for this study is fairly typical of adaptive tests being prepared for large

scale implementation in the near future, and the various rescoring strategies

studied are typical of those most frequently used with conventional linear

testing. Thus the prospects for generalization appear to be good, although

this should be confirmed with additional studies using different adaptive

tests.
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Appendix'

The Weights

We have g(9) .12 , the distribution of proficiency in a typical group of

examinees, from the method of Mislevy (1984) at K discrete values of (nearly)

equally spaced G, where fk is the number correct true score on the reference

set of items used for scoring purposes. We wish to make comparisons of

various root mean squared differences only for those simulees who received

flawed items in a particular simulation. We need f(flflawed item), which we

can obtain by Bayes theorem as follows.

Let 0;34 be the original weights, or the prior, k = 1, , K. Let

P(flawed itemlk) k = K, be the sample proportion of simulees receiving at

least one flawed item, given true score. this information is available from a

simulation of flawed items. Then the estimated posterior probability

i(k)' i(iklflawed item) =
P(flawed itemld g(fic)

)2 P(flawed itemlfie)g(£k')
k'

(Al)

These new weights will be used in the computation of various root mean squared

differences.

The Expected Squared Score Difference of Two CATs from the same Pool

Suppose a person with true score takes an adaptive te:_t from an item

pool and receives £1, as a test score. Suppose the same person takes a

second adaptive test from the same item pool and receives 2 as the second

' The derivations in this Appendix and the computer programs to obtain
the actual quantities are due to Dr. Charles Lewis. The authors are extremely
grateful for his help, interest, and advice.
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test score. Neither true ability nor the item pool changes between the two

testings. We want

(A2)

the expected squared score difference of two CATs from the same pool. The

interior expectation is the within group expectation, and the exterior

expectation is the expectation over the population of simulees who received

flawed items. For convenience, drop the conditional notation for a moment,

and also use the notation E

Now

var(ii10, ER2I0 = i12, and var(210.

E[ii -£2]2
= E[\ Rz + (141 il2)]2

= E{(1 1.11)2] + E{R2 1.42)21 + (111 - 112)2

since test scores are uncorrelated when is fixed. Using the notation

above, and reintroducing the conditional notation,

vartUe) + varR210 + [ER110 ER2142

However, except for sampling error

and

then

var I = .var( 2 I e)

E I = E I

E EX I d = 2 varCil .

(A3)
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To get the desired population expectation,

E[E(.3. - E2)2I} = E[2 var(1101

= 2 E[varcii .

(A4)

The square root of this quantity is the standard deviation of the distribution

of difference scores between the two administrations.

The Expected Squared Score Difference of Two CATs from Different Pools

Suppose a person with true score takes an adaptive test from an item

pool and receives as a test score. This can be a rescored adaptive test

from a pool with flawed items. Suppose the same person takes a second

adaptive test from a reduced pool and receives 2 as a test score. True

ability has not changed, but the item pool is now different. As before, we

want the expected squared score difference given in (A2). Since these scores

are also uncorrelated when is fixed, we can begin with equation (A3) (the

interior expectation in (A2)). However, in contrast to the previous

situation, the conditional means and variances will not be equal since the

item pools are now different so the equation is more complex. Thus we want

EtE[cii = E[var(e1Ie)] E[varR21

EIER, ER21d2}

Sample Estimates

(A5)

Thus far we have derived population expressions of various means, mean

squares and so forth. The obvious corresponding sample expressions are not
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always unbiased. Using a slightly different but more general notation in this

section, we derive unbiased estimates of the necessary population quantitites.

Suppose we have xi, i = 1, _ , K, with the xi identically distributed

with mean pi and covariance
2

Ti Also we have weights wi, i = 1,_, K with all

wi 0 and Ewi = 1. Define x = Ewi xi and A = Ewi . We want to use Ewi (xi x)2

to estimate Ewi - Th )2 .

We have

E {Ewi (xi - 31)2} = E {Ewi [(xi pi) + + 30121 ,

which, after some algebra, is equivalent to

2
cri

= Ewi + Ewi (pi )2 - varrx

2a
Now var (x 1.7

n
= var(Ewi xi) =

i

.

So

a
2

E {Ewi (xi - x )2} = ZWi µ )2 + ZWi - Ewt
a

ni ni

Thus an unbiased estimate of Ewi(pi -T.02 would be

2

EW, - -C)2 - LW; (1 ) Li

Now consider two sets of variables, xi and yi, all mutually independent,



with E (xi) = p, , E (yi) = my, ,
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a2 a2
var(xi) = varW = Again we have

11,

nonnegative weights wiwith Ewi = 1. Define x =Zwixi and y = Ewiyi,

Ax = /1404x,, Ay =2witAy, Consider Ew" -y) as an estimate of

Ewi (µx, I4x) 04y, Ay)

Now

E Ewi (xi - 3-t ) (yi -y)} [wi E (xi - E (yi y

= I wi /Ix) (Ay,

because of the mutual independence of xi and yi. Therefore, Ewi(xi x)(yi - y)

is an unbiased estimator of Zwi01x, -A04),, -Ay).

Next, consider -E-502 as an estimate of (Ttx Thy)2. Taking expectations

again, we have

E {(;: - Y )2) = E fkiZ (!lx Tiv) (Ty Y )12}

which can be shown to be equal to

2 2a
Yr2w/ ax, /7 \ 2 zwi

k ey]ncrr
So an unbiased estimator of (px Ay )2 would be

2 2
(x )2 azw,2 Yr

Finally, consider Ewiciii --)702 as an estimator for Ewi(Ax. pyj2. Taking



expectations we have

Now

So
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E {Ewi Yi)2} =Ewi E {(3i Yi)2}

E - Yi)2} E {[ {(xi yi) (Axi )1 + (PX, PY, )1}

var(xi yi) +

2 2
ay,

ny, (Px, PY, )2

0,2
E {Ewi (xi - yi)2} = Ewi + Ewi + - py, )2 .

nx, ny,

Therefore Ewi (xi - yi)2 - [
-2
C`x

1Ewi xi
nx,

v2
+ Ewi --2Y

ny,

Ewi Aye

is an unbiased estimator of
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Table 1: Typical Flaws and Current Strategies

Flaw

Remove
from

scoring

Score all
answers
correct

Score more
than one

answer correct

Score with
correct

scoring guide

No correct
answer

Yes Yes NA NA

More than
one correct
answer

Yes Yes Yes NA

Incorrect
scoring
guide

Yes NA NA Yes

34



Flawed Items

Table 2: Maximum observed exposure rates for various pools. Numbers
in parentheses indicate exposure rates after additional
extended Sympson and Hetter iterations.

Discrete items Reading Passages Items for
Passages

Baseline pool .24 .19 .19

25 most popular
items removed

.43 (.23) .25 (.18) .18 (.18)

2 most popular
items removed

.48 (.23) .22 (.20) .19 (.20)

2 typical items
removed

.24 .19 .21

2 most popular as
first items
removed

.26 .20 .19

2 most popular as
last items
removed

.29 (.24) .20 (.20) .19 (.20)
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Flawed Items

Table 5: Correlations between scores for simulees who received flawed items.

Between a rescored CAT and a
CAT from the reduced pool).

Between two CATS from
the reduced pool2

25 most popular items are
flawed

.875 .896

2 most popular items are
flawed

.866 .874

2 typical items are flawed .848 .830

2 items most popular in
first position are flawed

.894 .899

2 items most popular in
last position are flawed

.777 .753

1 Adaptive tests were rescored taking into account the nature of
the flawed item.

2 Reduced pools are smaller (by the number of flawed items) than
the baseline pool.
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